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Analysis of Selection in Populations 
Observed over a Sequence of Consecutive Generations 

I. Some One Locus Models w i t h  a Single, Constant Fitness Component per Genotype 

ALAN R. TEMPLETON 

Department of Human Genetics and the Society of Fellows, University of Michigan, Ann Arbor, Michigan (USA) 

Summary. A statistical model is presented for dealing with genotypic frequency.data obtained from a single popula- 
tion observed over a run of consecutive generations. This model takes into account possible correlations that exist 
between generations by conditioning the marginal probability distribution of any one generation on the previously 
observed generation. Maximum likelihood estimates of the fitness parameters are derived and a hypothesis testing 
framework developed. The model is very general, and in this paper is applied to random-mating, selfing, partheno- 
genetic and mixed random-mating and selfing populations with respect to a single locus, g-allele model with constant 
genotypic fitness differences with all selection occurring either before or after sampling. The assumptions behind this 
model are contrasted with those of alternative techniques such as minimum chi-square or "unconditional" maximum 
likelihood estimation when the marginal likelihoods for any one generation are conditioned only on the initial condi- 
tions and not the previous generation. The conditional model is most appropriate when the sample size per generation 
is large either in an absolute sense or in relation to the total population size. Minimum chi-square and the unconditio- 
nal likelihood are most appropriate when the population size is effectively infinite and the samples are small. Both 
models are appropriate when the samples are large and the population size is effectively infinite. Under these last 
conditions, the conditional model may be preferred because it has greater robustness with respect to small deviations 
from the underlying assumptions and has a greater simplicity of form. Furthermore, if any genetic drift occurs in the 
experiment, the minimum chi-square and unconditional likelihood approaches can create spurious evidence for selec- 
tion while the conditional approach will not. Worked examples are presented. 

I. Introduction 
A common experimental design used in population 

genetics is to follow the changes of gene or genotypic 
frequencies within a population over time in order 
to discover evidence for selection. In this and  subse- 
quent papers I will be concerned with statistical infer- 
ence in such populations followed over a run of 
successive generations. This paper in particular will 
be concerned with g allele, one locus selection models 
consisting of a single constant fitness component for 
each genotype in random-mating, selling, partheno- 
genetic and mixed random-mating and selfing popu- 
lations. 

Many authors have addressed themselves to the 
problem of estimating and testing single-locus selec- 
tion from such data. Some (Workman and Jain, 
1966; Lorenz, 1970 a, b, c; Stam, t971 ; Allard, Kah- 
let and Weir, t972) have estimated and tested fitness 
differences using single generation transitions. When 
data  on several consecutive generations exists, such 
procedures can be used on each transition observed. 

This study was supported in part by the U. S. Atomic 
Energy Commission, Contract AT (t t -  I ) -  1552 to the 
Department of Human Genetics (CFS), University of 
Michigan, and by National Science Foundation Grant 
BMS 74--17453 awarded to the author. 

In many situations, however, the population gene- 
ticist desires to impose a single fitness model  on the 
entire data set. In such cases, it is inappropriate to 
estimate fitnesses separately on each generation tran- 
sition. Furthermore, estimators based on successive 
pairs of generations contain a common set of obser- 
vations. Anderson /t969) and Stare (t97t) have 
shown how the covariance caused by the sharing 
of observations can be calculated, but  these covarian- 
ces still cause serious difficultiesin hypothesis testing. 
Furthermore, there is often another type of depend- 
ence in the data  that  is totally ignored --  the Mar- 
kovian dependence. More of this will be said later. 

To avoid some of these difficulties, Wright and 
Dobzhansky (1946) developed a least squares tech- 
nique for estimating the fitness parameters for con- 
stant fitness and frequency dependent models based 
on multi-generation data, but  their method considers 
each pair of successive generations independently of 
atl others. Levene et al. (1954) pointed out this causes 
the fitness estimators to be influenced mainly by the 
early part  of the experiment when the change in gene 
frequency is large. They stated that,  "Wha t  is 
needed is a method of estimation which will, first, 
consider the observations in their proper sequence 
and, second, give them their proper weights." They 
suggested a minimum chi-square procedure in which 
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the theoretical  frequencies for each generation are 
calculated in a deterministic fashion from the initial 
gene frequencies using a set of constant  fitnesses, 
Next,  a chi-square is calculated for the differences 
between the observed and the calculated frequencies. 
Finally, various sets of fitnesses are tried until a set 
is found which gives the smallest possible chi-square. 
They noted tha t  this procedure is efficient and 
essentially equivalent  to the method of max imum 
likelihood. However,  these opt imal  properties are 
known to exist only when the da ta  points are inde- 
pendent  of one another.  

A m a x i m u m  likelihood procedure analogous to this 
min imum chi-square procedure has been proposed by  
DuMouchel and Anderson (I 968). As in Levene et al., 
they  use the initial gene frequencies and a fixed set of 
constant  fitness values to calculate in a deterministic 
fashion the expected allele frequencies for each gener- 
ation. A mult inomial  sample of the genes is assumed 
to be taken every generation with the expected allele 
frequencies in the sample set equal to the theoretical 
deterministic values. Finally, each generation is 
t reated as if it were stat ist ically independent from 
all other generations. Maximum likelihood scoring 
is then used to find a set of fitnesses tha t  maximizes 
the likelihood for the entire experiment.  Others 
(Cavalli, 1950; Anderson, 1969; Prout,  1969) have 
also used m a x i m u m  likelihood procedures, but in all 
cases independence of the da ta  at each generation is 
assumed. 

However,  most  evolut ionary biologists model evo- 
lution as a Markov process such tha t  the probabilities 
of events  at  any one generation are highly dependent 
upon what  happened in the past. Consequently, 
observations made on a single population over t ime 
will with some sampling designs represent a highly 
dependent  set of data.  Under these conditions sta- 
tistical techniques which t rea t  the da ta  points as if 
they  were mutua l ly  independent can be misleading. 
For example,  Gastwir th  and Rubin (1971) have 
studied this statist ical  problem for da ta  tha t  has a 
correlation only between successive da ta  points and 
Bha t  (1961) has studied the distributions of goodness 
of fit stat ist ics for da ta  f rom a Markow chain or 
sequence. These works show tha t  if a null hypothesis 
is tested with the da ta  t reated as if it were indepen- 
dent, the true level of significance is different from 
the level of significance the experimentor  believes he 
has. When the correlation is positive (which will be 
the case in the type of Markov processes considered 
in this paper) the true level of significance is higher 
than  the set level of significance, causing the re- 
jection of the null hypothesis  more often than is 
stat ist ically justified for the set level of significance. 
To see how such a s i tuat ion could arise, consider an 
exper iment  in which the number  of heterozygotes at 
each of m consecutive generations is observed in a 
self-mating population. Suppose the experimentor  
tests for selection acting on the heterozygotes. With 

no selection, the expected frequency of heterozygotes 
at the ith generation is (i/2) *P0 where P0 is the initial 
frequency of heterozygotes. Suppose there is no 
selection but,  just by  chance, there is an excess of 
heterozygotes at generation i .  The experimentor  
could take such random perturbat ions into account 
by  incorporating a probabil i ty  distribution on the 
number  of heterozygotes at one generation such as 
the binomial with a mean of ni(t/2)*Po where n, is the 
population size at generation i. However,  given an 
excess of heterozygotes at generation i, an excess of 
heterozygotes over the value ni+~(I/2)i+~po is ex- 
pected for generation i + t due solely to the Marko- 
vian nature of the process; and similarly for the next  
few generations. A statistican who t reats  each gener- 
ation independently might  not a t tach any  special 
significance to the initial deviation, but  could easily 
conclude there was a significant deviation when the 
series of generations is combined. The statistician 
who views this as a Markov process would expect the 
subsequent deviations even when no selection was 
operating and therefore would give less significance 
to them. Because of the positive correlation tha t  
exists between generations, the procedures tha t  t reat  
generations as if they were independent tend to 
accentuate fitness differences and lead to tl=.e re- 
jection of the null hypothesis of no selection more 
often than is justified. I t  is therefore important  to 
derive estimation and hypothesis testing procedures 
which explicitly take into account the Markovian 
dependence tha t  exists in many  da ta  sets. 

II. Some Basic Theorems and Results 

The first step in obtaining max imum likelihood 
est imators is to obtain the likelihood function for the 
entire data  set. The general data  set considered is the 
array of genotypic numbers (or frequencies since the 
likelihood function will always be conditioned upon 
the total  sample size every generation) over m con- 
secutive generations. No reference will be made at 
this point about  the mode of reproduction of the 
population, mat ing structure, nature of the selection, 
ploidy or number  of loci and alleles. Let X,j be the 
number  of individuals of genotype i at generation i 

h 
where ~ Xi~ = Ni and h is the number  of different 

genotypes. Then let X, --- (Xil, X~2 . . . . .  Xih), the 
genotypic array at generation i, and let )(  --  (zY1, 
...,~7,~), the entire da ta  set over rn generations. 

represents a realization from an evolut ionary pro- 
cess which is assumed to be Markovian such tha t  
/(~,: ~7i_, ..... Z0, 0) = / ( x , :  x~_,, 0) 
w h e r e / ( X r  O) denotes the probabil i ty  density 
of Xr given P~-I ,  the genotypic array of the previous 
generation, and some fitness parameters  denoted by  0. 
In all the models considered in this paper  it is assum- 
ed tha t  the conditional distribution of the genotypic 
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a r ray  at generation i given the genotypic ar ray  at the 
previous generation and the parameters  0 is multi-  
nomial  : 

h 

/ (x~: X~_,, O) o~ 11 [t~_,,j(O)]X,J , 
j=l 

where ti-~,i(0) is the probabi l i ty  of obtaining an indi- 
vidual of type  1" at generation i as a function of P~i-i 
and 0. These conditional probabili t ies take into 
account explicitly the Markovian dependence tha t  
exists between generations. The likelihood function 
for the entire run of m generations, / ( X : X o ,  O ) 
obtained from the relation 

f (x , :  x,_,. o) I(Z,_, :  0) = I ( 2 .  0) 

a s  

20, o) 
i = t  /'=1 

The log likelihood, L.,(O), is proport ional  to 
h 

L,~(O) o~ ~ ~w X,~ in [ti_,,j(O)3 . (2.2) 
i = t  j = t  

0 represents the parameters  of the selection model 
under consideration, and it is assumed tha t  0 ranges 
over an open subset 0* of r dimensional Eucledian 
space. The following condition is imposed on the 
Markov process (Billingsley, t961, pg. 23): 

Condition 2.1. Inference is l imited to the set D 
of (2~i-~, 2(,) such tha t / (2s  : X~_,, 0) > 0 is indepen- 
dent of 0 and has continuous par t ia l  derivat ives of 
third order throughout  0% Moreover, the d h •  
matr ix  with elements (d being the number  of ele- 
ments  in D) 

,9t(~,: x~-l, 0)!~0,, ( 2 ~ _ , ,  2 , )  ~ D ,  u = l . . . . .  r 

has rank r throughout  0*. For each 0 ~ 0* there is 
only one ergodic set and there are no transient  states. 

For  the type of mult inomial  models used in this 
paper,  the first sentence in Condition 2.t is meet  if 
the fitnesses assigned to the various genotypes are 
all greater  than zero. Hence, any  lethal  genotypes 
must  be excluded f rom the transit ion mat r ix  before 
construction of the likelihood function. The second 
sentence of the condition places certain restrictions 
on the number  of parameters  tha t  can be treated,  
and in part icular  for the mult inomial  implies tha t  
only relative fitnesses can be dealt  with. However,  it 
is possible to have more than  one relative fitness 
component  per genotype provided enough transitions 
have been observed to satisfy the rank condition. 
The last sentence will in general not be met  for multi-  
nomial  transit ions because there can be fixation or 
loss of certain genotypic classes. Consequently, 
inference can be made about  the relative fitnesses 
of h genotypes only as long as there are transit ions 
involving all h genotypes.  The da ta  set, X, will 

therefore refer only to tha t  par t  of the experiment  
in which no fixation or loss has occurredl 

Condition 2.1 allows the log likelihood to be differ- 
entiated, so tha t  the m a x i m u m  likelihood equations 
can be obtained as: 

h x i j  et~-,,i(o) 
~L,n(O)/~Ou -- -- ~ Z - - o  ~=1 i=~ ti-~,i(O) aO, 

u = 1 . . . . .  r (2.3) 

The question of importance is when does a consistent 
solution, 0, of 2.3 exist. To answer this, Billingsley 
(1961) proved the following theorem: 

Theorem 2. I. Suppose condition 2A is satisfied and 
tha t  0 ~ is the true value of the parameter .  T h e n t h e r e  
exists a consistent solution, 0", of 2.3. 

In  m a n y  situations the experimentor  would also 
like to consider more than  one type  of selection 
model. Consequently, in addition to the original 
paramete r  space 0* of dimension r, suppose there 
is an al ternat ive paramete r  space q~* within 0* such 
tha t  qS* is an open subset of a c dimensional Eucledian 
space where c < r. Billingsley proved the following 
theorem:  

Theorem 2.2. Suppose condition 2.t is satisfied for 
qS* and 0*. I f  0 ~ is the true paramete r  value, then 

2/max~ 0* L ~ - - L  ~  2, 

2 (max L~ --  L~ -~ Z~, 
\ @* / 

2 ~(max0* L~ --  moax L,,) -* Z,-c,2 

where max  L,, denotes the log likelihood evaluated at  
p 

the m a x i m u m  likelihood est imators in the pa ramete r  
space p, L~ the log likelihood evaluated at  the null 
hypothesis  of dimension zero (which is the hypothesis  
of no selection in this paper),  Zg denotes a chi-square 
distribution with v degrees of freedom and -~ denotes 
convergence in law. Fur thermore,  the last two sta:  
tistics are asymptot ica l ly  independent.  

As an example of the use of this theorem, consider 
the testing of the goodness of fit of a selection model 0. 
A consistent solution is first found using theorem 2.t 
so tha t  the quant i ty  max  L ,  can be evaluated.  To 

0* 

test  for goodness of fit, the transit ion probabilit ies 
are re-est imated under a non-parametr ic  space, kV*, 
such tha t  equation 2.2 now becomes: 

m k 

L~ e<2~ Z X q l n  (ti-~,i) 
i=I j=1 

and 2.3 is obtained by  differentiating with respect to 
each ti-~,i as : 

] X~/ti_~,j -- Xih I - - j ~  ti-~,j = 0 

i = l  . . . . .  m , ~ = r  . . . . .  h - - 1 .  
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The solution of the above is 

i i -  t, i = X*I/N* �9 

Thus, the estimated transition probabilities are 
equated to the observed transition frequencies. The 
dimension of this non-parametric space is m(h.--l), 
so theorem 2.2 yields 

2 ~ .~ X, t ~ln(0**) -- In (e ,~(s  0))] --> X:,{*-I)-, 
i=1 i=t 

(2.4) 
where O,j is the observed frequency of genotype i at 
generation i and e,~(Xi-t, 0") is the expected fre- 
quency of genotype l' at generation i under 0" given 
X i - l .  

Another statistical problem is that  of replicate 
populations. Consider two populations that  are 
followed for ~ and s generations respectively. The 
observations in the two populations represent inde- 
pendent observations and the log likelihood for the 
entire data  set is L(O, 0') = Lm(O) + L~(O'). In par- 
ticular, a test for homogeneity is desired; that  is, 
a test of the hypothesis 0 = 0', vs. 0 ~- 0'. Note that  
the maximum likelihood solution of L(O, 0') when 
0 # 0" is simply the maximum likelihood estimates 
of 0 and 0' obtained from each population separately. 
The maximum likelihood estimate when 0 = 0' is 
obtained by  solving 

OL(O, 0')/00,, = 3L,n(O)/OO u + eL,(O)/tO,, = o 
~ -  1 ,  . . . ,  ~" . 

Billingsley has shown tha t  the statistic 

2 [max L(O, 0') ~ max L(O, 0)] ~ f l  (2.6) 
[ 0",0'* 0* 

under the hypothesis that  there is some 0 which is the 
true parameter  for both populations. 

Before discussing the genetic models in detail, one 
final statistical problem must be dealt with -- the 
problem of incomplete sampling. Until now it has 
been assumed that  both N, and X,~, the population 
size at generation i and the number of individuals of 
genotype ~ at i respectively, are observed. Often, 
however, a finite sample of size n, < N, is taken 
every generation or the sample is not even drawn 
from the reproducing population (i. e., the sample 
individuals never contribute to the next  generation) 
and x,~, the number of individuals with genotype /" 
in the sample, is observed. Consider, for simplicity, 
the case in which only one independent genotype is 
observed such that  the population consists of X, 
individuals of the genotype of interest at generation i 
and N , - - X ,  other individuals. Suppose the dis- 
tr ibution of Xt given X i - l / N i - ~  ~ qi-1 is binomial: 

] (X , :  q i - , ,  O) = X ,  [t(qi- , ,  0)] x' [1 -- t (q i - , ,  0)] N ' - x '  

(2.7) 
where t(qi_~, 0) is the expected frequency of X i given 
qi-t and some parameter  0. Suppose a random 

sample is taken of size n~ at generation i. Then the 
sampling distribution is 

Xl l \ n~ - 

Combining (2.7) and (2.8) and summing over all pos- 
sible values of the unobserved quant i ty  X~, the 
distribution of x, is obtained as: 

(.4) -,(q,_,, 
/ ( x , : q i - , ,  O) = x ,  0 ) ] '~ - " .  

(2.9) 

Consequently, for one generation the distribution of 
x~ is still binomial. Unfortunately, it depends on the 
quant i ty  qi-I  = X i - d N i - ~  which in general is un- 
observed. Also, relation 2.1 depends on the popu 7 
lation values and not the sample values. However, 
it is possible to estimate the frequency q~ by ~ x . ~ / n ~ .  
This estimate is unbiased and has variance 

(t - n,IN~) ~ , ( t  - -  q , ) l n , ,  ( 2 . 1 0 )  

when the sample is drawn from the reproducing popu- 
lation or 

q, ( t  - q , ) l . ,  ( 2 . 1 t )  

when the sample is not part  of the reproducing popu- 
lation. Equation (2.t0) goes to zero when either n, 
approaches N, or n, gets very large, and (2.1t) goes 
to zero when n, gets very large. Under these con- 
ditions, ~, converges in probabili ty to qi, and the log 
likelihood (2.2) can be approximated by using the 
sample frequencies instead of the population fre- 
quencies. Given that  this approximation is valid, all 
the previously discussed results follow. 

This approximation will be best when the sample 
is drawn from the reproducing population and n,: 
represents a substantial proportion of N~. Conse- 
quently, an optimal experimental design is to es- 
tablish a finite population of such a size that  a sub- 
stantial sample of the population may be taken every 
generation. However, many experiments have not 
followed this design and instead have N, very large 
and n, considerably smaller. Under this design the 
approximation is still good when n~ is large. This 
implies that  N, is usually extremely large with the 
result that ,  given a true fitness model, the population 
genotypic frequencies at any generation will conver- 
ge to their deterministic values calculated from 
the fitnesses and initial conditions. This, coupled 
with a large n, every generation, implies that  the log 
likelihood given by 2.2 evaluated at the sample 
frequencies will be approximately equal to the log 
likelihood obtained by assuming deterministic ex- 
pected frequencies with independent, multinomial 
sampling every generation. Under these conditions 
(large n~, N~, ~ c~) the model considered here yields 
as a special case a model analogous to the one em- 
ployed by DuMouchel and Anderson (t968) for a 
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r andom mat ing  population with all selection after  
sampling. 

The final case occurs when the variance of ~, cannot  
be ignored. T h i s  will usually occur when n~ ~ N~ 
and n, is small or just when n~ is small if the sample 
is not par t  of the reproducing population. Under  
these conditions it would be bet ter  to view all the 
randomness in the process as sampling error and 
calculate the expected frequencies in a determinist ic 
fashion providing N~ is large. However,  a be t ter  
procedure would be to explicitly take into account 
both  the sampling error and the Markov nature  of 
the evolut ionary process, bu t  this will be the subject 
of a later  paper.  In all the following sections of this 
paper  it is assumed tha t  either n~ is large with respect 
to N,, or tha t  n, itself is very  large. 

III. Appl icat ion  to Dip lo id  Populat ions  wi th  Con- 
stant Fitness  Differences  at a Single  Locus  

The results of the previous section will now be 
applied to the special case of a diploid populat ion 
observed with respect to a single locus with g alleles. 
Ins tead of designating the genotypes b y  a single 
number  1' as before, it is now more convenient to use 
a pair  of numbers,  uv, where u < v and u, v ~ t ,  2, 
.... g. Thus, h = (t/2) g ( g + t )  in equation 2.2. Let  
x~,,o be of number  of individuals of genotype uv 
observed at generation i in a sample of size n,, 
q~,,~ the sample frequency of uv at i, y~,, the number  
of copies of allele r at i in the sample and Pi,,  the 
sample frequency of allele r at i. Suppose fur ther  
tha t  O, the fitness model, consists of a single con- 
s tant  fitness paramete r  per genotype. This model 
will be designated by  the symbol  w and w,~ is the 
constant  fitness pa ramete r  for genotype uv. Since 
these are relative fitnesses, one of the w's is set equal 
to one. 

Under this type of fitness model, the conditional 
transit ion probabili t ies m a y  be writ ten as t i ,~(w) 
--:. di ,~(w)/w~ where 

g g 

~ = X X d~, ~ ( w ) .  
~ = 1  v = u  

~, represents an average fitness and can always be 
scaled to equal one when all the w's are one (no 
selection). The exact  form of the d's will, among 
other things, depend upon the t ime at  which selection 
operates with respect to sampling. The model re- 
stricts all selection to occur either before sampling 
or after sampling for otherwise more than  one fitness 
pa ramete r  per genotype would be required. If all 
selection occurs before sampling, the d's m a y  be 
writ ten as 

di - t ,  uv = wuv el, uv (3.1) 

where ei,,~ is the expected frequency of genotype uv 
at generation i given no selection and the genotypic 
s tate  at i - -  t .  The m a x i m u m  likelihood equations 

or scores corresponding to 2.3 now take the form: 

Suv ~- OL,~/Ow~ = ~ ( x i . ~ / w ~  - -  n~ei,~fl~vi-I) = 0 
i = 1  

u < v --- 1, .... g .  (3-z) 

An approximate  solution when all the ~ ' s  are close 
to one is 

A0 
Wuv  ~ Xi ,~v  --~. n~ gi ,uv  �9 

i ~ t  i = t  

The w~^~ closest to one can be set equal to one, and 
all fitnesses are then measured relative to it. If  it is 
desired to measure fitnesses relative to a specific 
genotype or if none of the ~~  are close to one, all 
the initial fitness approximat ions  can be divided by  
the initial fitness est imate of the genotype for which 
it is desired to have a relative fitness of one .  

In  order to obtain a more exact  solution of 3.2, 
the following Newton-Raphson i teration is used. 
Let  ~o be the vector  of initial approximat ions  and let 
Ow 0 be a vector  of small additive corrections such 
tha t  w0 + 6w0 is a be t ter  approximation.  Let  D(w)  
be the mat r ix  whose elements are the second part ia l  
derivat ives of the log likelihood which for the spe- 
cial case of all selection before sampling are 

Duv, i~ = ~Lm/Owu~ ~wj~ = 

-- ~ (n~e~,,~ei, ik/w~-, - -  yx~, ~ / ~ )  

u < v - - - - - t  . . . . .  g [ t i f u v = ~ k  
j" < k ----- l . . . . .  g 7 - -  ] 0 otherwise 

The D's  are then evaluated at w0 and the vector  of 
corrections is 

~w, = [ - -  D(~o)] - '  S(~vo) 

where S(~0) is the vector  of scores given by  3.2 
evaluated at w0- The next  approximat ion  is obtained 
and the process repeated until  convergence to yield 
the m a x i m u m  likelihood estimates,  ~. The quan t i ty  
- -D(~)  is the precesion ma t r ix  which converges 
with probabi l i ty  one to its expected value, the infor- 
mat ion mat r ix  (Kendall and Stuart ,  1973). Conse- 
quently,  [ - -D(~)]  -1 est imates the variance-covari-  
ance mat r ix  for the fitness est imators.  

Once the m a x i m u m  likelihood est imators  have 
been obtained, hypotheses m a y  be tested. First, the 
goodness of fit of the null hypothesis  m a y  be tested 
with 

i = l  * * = t  V=I*  

This is s imply a special case of s tat is t ic  2.4 in which 
r = 0 and h = t12 g(g + 1). Similarly, the goodness 
of fit of the model of constant  fitnesses can be tes ted 
with stat ist ic 2.4 with 1 / 2 ( g + 2 )  ( g - - l )  ( m - -  t) 
degrees of freedom since 1/2 (g + 2) (g - -  t) indepen- 
dent w's  have been est imated.  Finally, theorem 2.2 
m a y  be applied to test  the constant  fitness model vs, 
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the null hypothesis to yield: 

2 ~ ~ ~ (xi, uvln~vuv--n, l nw ,_ l ) - -~  Z~/a(g+2l(g-O, 
i ~ 1  U ~ I  v = U  

where wi_~ is the average fitness evaluated at ?~. 
The exact forms for the e's will depend upon the 

mode of reproduction and mating pat tern of the 
population. For an automictic parthenogenetic popu- 
lation, 

ei,~, = q i - , . , ,  + t /2 (1 -- K) 2: qi- , , , j  
J=, (3.3) j:#u 

ei, uv = Kqi-~,uv u C= v 

where K is defined as the probabili ty of a heterozy- 
gous adult giving rise to a heterozygous zygote and is 
a function of the type (or types) of automixis by 
which diploidy is restored and the linkage relationship 
of the locus to its centromere (Asher, 1970; Temple- 
ton and Rothman,  1973). Equation 3.3 can also be 
used for a self-mating population by setting K = t/2. 

For a random-mating population, 

ei ,# -~ Pi-~, i (3.4) 
ei, j k =  2Pi-, , jpi--~,k j ~ k .  

Furthermore,  a population reproducing by any mix- 
ture of automixis, selfing and random mating may be 
described by the appropriate mixture of (3.3) and 
(3.4). 

When selection operates after sampling, the d's 
may  not be factored as in (3.t). For an automictic 
or self-mating population, 

di, ~ - -  wu~ Ifqi  .... u ~ v | 

g ] (3.~) di ,~  : w ~ q i , ~  + t/2 (1 --  K )  X w~qi . . . .  
V = t  

The maximum likelihood scores are 

~-, f Kxi,  *,v 
= ,. . ,  q - , , . ~  ] ~  + 

u < v = t . . . . .  g .  (3.6) 

An initial solution when (3.6) is set equal to zero is 

~v~ = 2:  n ,qi - t ,  ~ ( q i , ~  --  e~,~)/e~, ~ + ~ n,q~_~,~/e~ . . . .  
i = 1  / = 1  

 oo: k x . . -  • 
i = !  i = t  

• [1 - -  ~/2 (~ --  K )  (qi,,,,,/ei,,,,, + qi,,,/el, ~)] 

The maximum likelihood solution can be found 
through scoring with 

Duv, ik : qi-~, uvqi-~,ik d~ Owik 
i = 1  ~ i - - t  z - - l ,  uv 

- -  t /2 (1 -- K ) [  xi, uu Odi-,,uu xi, vv Odi- , ,w][  
d~-l,-u-u Owi~ + di-~,vv Owi~ J~ 

where 

I 
1 if t = z = i = k  
I/2 (1 - - K )  if t = z ,  i < k ,  

8di-t,t,~/~wik = t = 1" or t = k 
K if t = ~ <  z = k  
0 otherwise.  

The goodness of fit of the null hypothesis and of the 
constant fitness model are tested with the appro- 
priate forms of statistic (2.4) with 1/2 (g+2) (g-- l)  m 
and 1/2 (g + 2) (g -- t) (m -- t) degrees of freedom 
respectively. The test of the constant fitness model 
vs. the null hypothesis is 

i = t  U = I  V = ~  

- -  n ,  I n  ( w i - l ) ]  

which is asymptotically chi-square with 1/2 (g + 2) 
• (g -- t) degrees of freedom. 

For a random-mating population with all selection 
after sampling, 

di,~,, = } (3.7) p~L,,.(w) 
di,,~ = 2pi_,,,,(w) pi- , ,~(w)  u < v 

where 
g 

p~_,,.(w) = t/2 (w~.qi_,,.~ + 2: w.~r 
V = I  

Mixtures of random-mating, automictic and selfing 
populations may be described with the appropriate 
mixture of (3-5) and (3.7). However, if the popu- 
lation is reproducing solely by  random-mating, the 
log likelihood corresponding to (2.2) is 

Z xi,,~ln (d,_,,,,~(w)) --  2n, ln(~) 
i ~ l  U = t  V~*A 

y~,t ln (p~- , ,dw))  - 2n~ ln(G-_,) (3.S) 

where 
g g g 

uSi-, - - ~ p i - , , ~ ( w )  = ~ 2~ ~ w,vqi- ,  . . . .  
t = l  ~I V=U 

The impact of selection is thus manifested through 
the y's, the allele numbers, and not the x's, the geno- 
type numbers for this special case. This in essence 
reduces the amount of information gained per gene- 
ration since the number of genes is always less than 
the number of genotypes (unless some genotypes are 
excluded due to lethality a priori) .  Because of this, 
condition (2.t) will not be satisfied unless m > t/2 
• (g + 2) in contrast to the previously discussed cases 

in which m > t satisfies condition (2.1). I t  is also 
more convenient to apply theorems (2.1) and (2.2) 
to the allele number form of (3.8) as opposed to the 
genotype number form to yield 

m 

S,~ = Z n,qi- l , ,~(pO,/p~-l , , (w)+ pi ,Jpi-t ,~(w) --  2/wi-l) 
i = t  
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,u 
D~,ik  ~- Z x i - l . ~ x i - ~ , j k  [2n,/wi_l--~ - -  ylYi,~/Pi-t,~ ,,(w) - -  

- -  ),2y,,~lP~-,,v(w)] 
1 if u = v - ~ i = k  

t/2 if u----v, l" (k ,  u : = i ,  or u-----k 
}'1 = 

1/4 if u ( v ,  ~ ( k ,  u = j  or u = k  

0 otherwise 

1/4 if u ( v ,  ~ ( k ,  u =  i or u = k  

72 --  0 otherwise.  

The goodness of fit of the null hypothesis  and of the 
constant  fitness model are tested with statist ic (2.4) 
using observed and expected allele numbers  with 
(g - -  t)  m and (g - -  1) (m --  1/2 (g + 2)) degrees of 
freedom respectively. The test  of constant  fitnesses 
vs. the null hypothesis is 

t=,I' y,,, } 2 - - / S  [ In (;bi.-1, ,(w)) - -  In (~bi,,)] - -  2n, l n (w i_ l )  
i =1  

which is asymptot ica l ly  chi-square with t /2 (g+2) 
X (g - -  1) degrees of freedom. 

So far the m a x i m u m  likelihood theory of Markov 
processes as developed by  Billingsley has been applied 
to various genetic models. The s t rength of this 
theory lies in its general applicability, but  when 
dealing with specific problems it is often possible to 
supplement  this generalized statist ical  f ramework 
with more specialized and powerful statist ical  tools. 
For  example,  Templeton and Ro thman  (1973; here- 
after referred to as T & R) examined in detail  the 
analysis of "he t e ros i s "  in an automictic or self- 
mat ing pol~ulation with respect to a single locus for 
which only two genotypic categories are distinguished : 
heterozygotes and homozygotes.  The homozygotes  
are assigned a fitness of 1 and the heterozygotes a 
fitness of 1 + s. The coefficient s can be regarded as 
a measure of "heterosis"  in a very broad sense, or as 
the degree to which loss of heterozygosi ty is re tarded 
or accelerated due to selection. 

Assuming tha t  all selection occurs before sampling, 
this si tuation is s imply a special case of (3.2) and 
(3.3) with w ~ =  t - V s  for all u ~ v  and w ~ =  t 
for all u. Under these conditions, the likelihood 
collapses into the form 

,(~: s) ~,=l/~r (n,)x~ (t + s) ~' (1 + s K q , _ , ) - "  • 

X ( K q i - , ) "  (t - -  Kqi_ t )  ''-'~* (3-9) 

where x, and q~ are the number  and frequency of 
heterozygotes observed at i (T & R only considered 
the case of constant  population size, complete sam- 
pling and an initial population of heterozygotes only, 
but  the dropping of these restrictions is straightfor-  
ward under the conditions described at  the end of 
section 2). One can apply  Billingsley's theorems to 
(3.9) to obtain the m a x i m u m  likelihood est imate of s 
and test  the hypothes i s / /1 :  s v6 0 vs. H0: s --  0, but  

T & R also considered two other hypothesis  testing 
tools based on the rat io:  

1(~: s ) / l ( ~ :  s - -  o) = H ( ~ ,  s) ---- 

= (t + s )  ~exp  - - i  n ~ l n ( l + s K q i _ t )  

where 
$n 

i = t  

The first test  is to calculate the "odds"  in favor of 
one hypothesis  over the other which tells one which 
hypothesis is more likely and by  how much. The 
odds of H 1 vs. H o with the possible values of s 
weighted by the prior distribution (as described in 
T & R )  

I(1 + s) = (t + s) e - ( ' + ' t  

are obtained as 

0(~) ~ eb(b + t) -~-2  (a + t)!  

V2~/(a + t) [(a + l ) l ( b  + 1)~ ~+~ e ~ - ' - '  (3 .10)  

where 

b = K ~ n ,q i - t  �9 
i = l  

The second test  was derived by  differentiating H(b, s) 
with respect to s and evaluating the derivat ive a t  
s ---- 0 to yield the "locally best t e s t "  of Ho: s _< 0 vs. 
H't: s "~ O. This test  has m a x i m u m  power out of all 
possible tests with the same significance level in the 
vicinity of s--= 0. After proper normalizat ion this 
test  becomes to reject Ho whenever u > c(a) where 

u : n,(q,  - -  Kq~_t) + ~ K*qo (1 - -  K*qo) (3.11) 
i=1  F i = I  

and c(~) is a constant  tha t  depends upon a, the signi- 
ficance level of the test.  T & R showed tha t  u is 
normally distr ibuted with mean 0 and variance 1 
wheh sampling is complete and populat ion size con- 
stant ,  and it is a s t raightforward exteusion of their 
proof tha t  (3 .t 1) is also normal  zero, one under the 
sampling conditions discussed at the end of section 2. 
Consequently, c(~,) is obtained f rom a s tandard nor- 
mal  table. 

However,  .it is possible to develop even more 
stat ist ical  tools for this problem which give greater  
flexibility in da ta  analysis. In  deriving the distri- 
bution Of u, it can be shown tha t  the random va- 
riables 

z~ --= ~ni(q~ --  K q i - t )  i - -  I . . . . .  m 

are asymptot ical ly  independent normals with mean 
zero and variance K*qo (1 --  K*qo ) for large n, (T & R). 
Hence, 

u'  = Z z , - - [ Z  K*qo(l - -  K*qo)]'12 
i~l  J 

where I is all or any subset of the generation indices 
is normal  zero, one. Therefore, if da ta  was not  ob- 
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tained for some of the generations between t and m, 
those values of i for which q , -  Kqi_ ,  cannot be 
evaluated are simply deleted from the sums in u to 
yield u'. Thus, even with data missing on some gene- 
rations, it is still possible to test Ho vs. H~. Also, 
u and u'  can test H o vs. H 1 by regarding them as 
two-tailed tests rather than one-tailed tests. 

The statictics u and u'  are excellent test statistics 
for distinguishing s = 0 vs either s = constant ~ 0 
or s = constant v~ 0, but there are some serious 
shortcomings when testing for the goodness of fit 
of the null hypothesis against all other alternatives. 
Suppose, for example, there is indeed selection but 
tha t  s could be either positive or negative for any 
given generation. Since both u and u'  measure a sum 
of deviations from the null expected values, a set of 
positive and negative deviations might yield a low 
u or u'  value and lead to the acceptance of the null 
hypothesis. To avoid this difficulty, a sum of squares 
of the deviations can be taken. I t  follows from the 
distribution of the z's that  when H 0 is true 

z . . . .  ~ ne(qe --  Kq i - , )  2 + Keqo (t -- Kiqo) ~ Z~,  
i = t  

v' ---- Z ne(qe - -  K q , - , )  ~ + K'q0(l - -  K*qo) ~ Z~ 
~d 

where I is a subset of the generation indices con- 
sisting of t elements. These statistics provide a more 
robust goodness of fit criterion for the null hypothesis 
than the u and u'  statistics. Further  illustrations of 
how these tests may be extended will now be provided 
in conjunction with the worked examples. 

IV. Some Worked Examples 

A.  A predominately  sell-mating population 
Allard, Kahler and Weir (t972) studied esterase 

allozymes in a predominately self-mating population 
of barley. They obtained seed samples ranging in 
size from t006 to 4587 seeds per generation for t0 
generations. The ten generations are not consecutive, 
however, but  fall into three groups of 3, 4 and 3 con- 
s~cutive generations respectively with gaps of 7 and 6 
generations separating the groups. The seeds were 
scored for their genotype at four esterase loci and the 
percent of heterozygotes and gene frequencies were re- 
corded. This data  is given inTables I through 4 of Allard 
et al. The frequency of outcrossing in this population 
was estimated to be 0.0057. Because this is such a small 
value, this data will be analyzed using a modification 
of the methods given in the last part  of section I I I .  The 
effect of outcrossing on the mean frequency of hetero- 
zygote given both the heterozygote frequency and gene 
frequencies of the previous generation is incorporated 
into the results of that  section, but the effect of out- 
crossing on the higher moments of the conditional 
heterozygote frequency distribution is ignored; i.e., 
tha t  portion of the conditional heterozygote fre- 
quency at each generation that  is due solely to ran- 

dom mating is treated as a constant. This assump- 
tion is a good one because the frequency of outcross- 
ing is very low and the model is used only to generate 
the moments for a single generation transition. Thus, 
the small amount of outcrossing present could have 
very large effects when compounded over several 
generations, but the assumptions used here only re- 
quire that  its effect over a single generation be small. 
This points out an advantage of the conditional 
approach over the method of using the model to 
generate the moments for all generations from the 
initial conditions -- that  is, the conditional analysis 
is more robust to small dev ia t ions / rom the underlying 
assumptions than the corresponding unconditional mo- 
del s imply  because such deviations are not compounded 
over several generations. 

The modified statistics become: 

a = ~ niqe 
i = 1  

b ~ ~ n,ee 
i = 1  

e, = 1/2 (.9943) qi-, + He, 
g g 

me := (.0057) Z Z 2Pi - , , iP i - , , k ,  
i=l k=i+i 

o(~) - -  e ~ (b + 1) - ~ - ~  (a + t ) !  

= , x  - ee) + (1 - -  

v ' (~ )  = X n,(qe - e Y / E a ' ( q o )  (1 - G ' (qo)) l  
i ~ I  

G(qo) = .497t 5 qo + / / 1 ,  

G*(qo)-- G[G'-'(qo)l -~ .497t 5 [G'-'(q0)j + H , .  

These statistics were applied to the data given in 
Tables 1, 2 and 3 of Allard et al., (1972) on esterases 
A, B and C. Each of the three runs of consecutive 
generations for these loci was treated separately with 
I corresponding to the indices only in a particular 
consecutive run and with the first generation in a run 
corresponding to i = 0. The statistics u'(~) and v'(2) 
were also used on all the observed generations for 
each locus with the index i = 0 now corresponding 
to the first generation with data (Fa in Allard et al.) 
and going to i = 22 (F,~) with the missing generations 
deleted from the summations. However, Ge(qo) in 
general depends on some of the He from missing 
generations, so whenever H, could not be observed 
directly the maximum H, over all observed gene- 
rations was substituted. Such a procedure would 
tend to bias the test against the hypothesis of 
"heterosis" (s "> 0), but  since the H's  are relatively 
constant and small for a given locus such a bias is 
minor. 

The results of this analysis are given in Table 1. 
The A locus shows a consistent pattern of a small 
amount of heterosis throughout the experiment which 
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Table 1. Analysis of esterase heterozygosity in a barley population + 

Locus Initial Max. Like. Standard Generations u Test Odds ++ Est. of s Est. of s Deviation v Test, d] 

A " 4 to 6 0.1774 0.1849 0.1227 1.7463 0.3134 
t4 to 17 0.1729 0.1760 0.t040 t.7971 0.3822 
24 to 26 0.O894 0.09O8 0.t078 0.9227 0.1299 
all  u ' = 3 . 0 0 2 0 "  

3.7309 2 
34.1887" 3 
t.2015 2 

v ' =  78.2632* 7 

t3 4 to 6 --0.467t --0.4715 0 . t t89  --2.8419" 23.6882 
14 to t7 0.5t47 0.5281 0.1250 6.2016" 7016.5800 
24 to 26 --0.1485 --0 . t499 0.1086 --1.2358 0.2672 
all u ' =  t.0576 

8.6972* 2 
376.0675* 3 

1.5944 2 
v" = 1066.7605" 7 

4 to 6 0 .0 t t8  0.0t23 0.t014 --0.1293 0.0906 
14 to 17 --0.1644 --0. t685 0.0673 --2.0503" 1.0573 
24 to 26 0.t946 0.2046 0.0665 2.8980* 8.3321 
all u ' = 0 . 4 5 4 5  

7.9279* 2 
77.499t* 3 

197.5070" 2 
v ' =  t259.0295" 7 

+ Data from Allard, NaMer and Weir (t972). 
++ Odds less than one favor s = 0, odds greater than one favor s = constant # 0. 

* Significant at P < .05. 

is s ign i f i can t  for t he  e x p e r i m e n t  as a whole  as  shown 
b y  the  u '  a n d  v" s ta t i s t i c s .  The  B and  C loci  have  
d r a s t i c  and  s ign i f ican t  shi f ts  in the i r  s va lues  be tween  
runs ,  b u t  w i th  d i f fe ren t  p a t t e r n s  for  each  locus. Note  
t h a t  t he  u' t e s t s  fai l  to  i nd i ca t e  a n y  s ign i f ican t  selec- 
t ion  for  e i the r  locus over  a l l  gene ra t ions  desp i t e  the  
ove rwhe lming  ev idence  for  se lec t ion  p r o v i d e d  b y  the  
v' tes t s .  Th is  is  a t t r i b u t a b l e  to  the  fa i lure  of t he  
a s s u m p t i o n  of a c o n s t a n t  "s" for  t he  B and  C loci. 
Th is  ana lys i s  i nd i ca t e s  t h a t  each  of these  t h ree  loci 
have  expe r i enced  d r a s t i c a l l y  d i f fe ren t  p a t t e r n s  of 
select ion.  Th i s  conf i rms  a n d  ex t ends  t he  conclus ion 
g iven  in A l l a r d  et at. t h a t  " . . .  se lec t ion  o p e r a t e d  
d i f f e ren t i a l ly  on these  t h ree  v e r y  t i g h t l y  l i nked  loc i . "  

B. Random-mating with all selection be[ore sampling 

A n a t u r a l  p o p u l a t i o n  of t he  m o t h  Panaxia domi- 
nula has  been  s t u d i e d  since t he  y e a r  1939. Th is  
p o p u l a t i o n  is p o l y m o r p h i c  for  t he  medionigra gene 
w i th  al l  t h r e e  g e n o t y p e s  be ing  p h e n o t y p i c a l l y  d i s t i nc t  
in  t he  adu l t .  D a t a  on  th i s  p o p u l a t i o n  is g iven  in 
Tab le  9 of F o r d  (1971). 

The  samples  were t a k e n  f rom the  r e p r o d u c i n g  a d u l t  
p o p u l a t i o n  each  genera t ion .  The  p o p u l a t i o n  size of 

t he  en t i r e  co lony was e s t i m a t e d ,  a n d  the  s amp le  
u s u a l l y  a m o u n t e d  to  t 0  to  25% of t he  t o t a l  p o p u -  
la t ion .  I n  the  y e a r s  1939--1961 the  s amp le  sizes 
r a n g e d  f rom a low of 1 t7  to  a h igh  of t , 6 t 2 .  Th i s  
s a m p l i n g  scheme is cons i s t en t  w i th  t he  a s s u m p t i o n s  
of t he  cond i t i ona l  l ike l ihood  m o d e l  for th i s  t ime  
pe r iod  and  r ep resen t s  a d a t a  set  t h a t  is u n d o u b t e d l y  
a f fec ted  b o t h  b y  s ampl ing  e l r o r  and  the  M a r k o v i a n  
e r ror  or gene t ic  d r i f t  of t he  en t i re  p o p u l a t i o n .  The  
m o d e l  g iven  b y  (3.4) wil l  be  a p p l i e d  to  th i s  d a t a  
which  assumes  r a n d o m - m a t i n g ,  c o n s t a n t  f i tnesses  
and  al l  se lec t ion  occur r ing  before  sampl ing .  

The  i i tness  e s t i m a t o r s  for t he  23 gene ra t i on  se- 
quence  f rom t939 un t i l  t 9 6 t  is g iven  in Tab le  2. The  
goodness  of f i t  of t he  nul l  h y p o t h e s i s  is v e r y  poor ,  
as  is t h a t  of the  c o n s t a n t  f i tness  model .  The  t e s t  of 
c o n s t a n t  f i tness  vs. t he  nul l  h y p o t h e s i s  shows t h a t  
a c o n s t a n t  f i tness  m o d e l  does  n o t  f i t  the  d a t a  s igni-  
f i c a n t l y  b e t t e r  t h a n  the  nul l  hypo thes i s .  Thus ,  t h e r e  
is ev idence  for some t y p e  of select ion,  b u t  a c o n s t a n t  
f i tness  m o d e l  is i n a p p r o p r i a t e .  Howeve r ,  as e x p l a i n e d  
in F o r d  ( t97 t ) ,  t he re  is reason  to  be l ieve  the re  was a 
d ra s t i c  change  in the  f i tnesses  fol lowing the  y e a r  1955. 
Hence ,  the  ana lys i s  was r e a p p l i e d  to  the  17 gene-  

Table 2. Fitness analysis of a population of Panaxia dominula + 

Initial ++ Maximum Stand. Corr. Goodness of fit tests of: Z 2 Test of 
Number of 
Generations Genotype Fitness Like. Dev. of of null df constant df con. selc. df 

Estimate Estimate Est. Est. 's hypothesis selection vs. null 

23 medionigra .97 .97 .03 --0.02 128.76" 44 t26.14" 42 2.65 2 
( t939-- t96 t )  b imacula  .81 .80 .16 

17 medionigra .91 .90 .03 --0.02 29.43 32 t3.49 30 t 5.95" 2 
(t939--1955) bimacula  .56 .55 .14 

Data from Ford (t97t). 
++ All fitnesses are measured relative 

* Significant at  P < .05. 
to the fitness of the dominula homozygote. 
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Table 3. Fitness analysis of inversion data on Drosophila ananassae populations + 

Goodness of fit tests of: 
Initial Repli- Geno- Min. Z 2+§ Maximum Stand. . . . . . . . .  _ . . . . . .  Z 2 Test of con- 
Freq. cation type Fitness Like. Dev. of null df constant df stant selc. vs df 
A Estimate Estimate Est. hypothesis selection null 

AA .429 .421 .092 
1 BB .243 .254 .043 95.96* 6 4.02 4 91.94* 2 

AA .263 .237 .O92  134.11" 6 9.33 4 124.78" 2 
.t 2 1313 .172 .160 .033 

AA -- .335 .064 230.07* 12 16.72 10 213.35" 2 1 N:2 t3B -- .205 .027 Homogeneity chi-square of I & 2 == 3.36 2 

AA .488 .462 .067 71.15" 6 13.72" 4 57.43* 2 
1 BB .722 .625 .268 

AA .400 .403 .064 
.9 2 BB .315 .377 .181 56.26* 6 7.24 4 49.02* 2 

AA -- .431 .046 127.41 * 12 21.56" 10 t05.84" 2 
I & 2 t3B --  .470 .150 Homogenei ty chi-square of I & 2 = 0.61 2 

.1 & .9 all  AA -- .37t .026 357.47* 24 42.00* 22 3t5.47" 2 
BB -- .221 .025 Homogeneity chi-square of all 4 = 7.70 6 

+ Data from Tobari and Kojima (t967). 
+§ Calculated by Tobari and IKojima relative to the heterozygote AB. 

* Significant at P ~ .05. 

r a t i ons  f rom 1939 un t i l  t955.  The  resul t s  of th is  
ana lys i s  are  also g iven  in Table  2 and  differ  signi-  
f i c a n t l y  f rom the  p rev ious  analys is .  The  goodness  
of f i t  ch i - square  of bo th  t he  nul l  hypo the s i s  and  con- 
s t a n t  se lec t ion  are  no t  s igni f icant ,  b u t  the  goodness  
of f i t  of c o n s t a n t  se lec t ion  is cons ide r ab ly  smal ler ,  
i n d i c a t i n g  an exce l len t  f i t  of the  cons t an t  f i tness  
model .  The  tes t  of c o n s t a n t  se lect ion vs. the  nul l  
h y p o t h e s i s  o v e r w h e l m i n g l y  re jec t s  the  nul l  hypo-  
thes i s  ( p r o b a b i l i t y  < .000t)  in f avor  of cons t an t  se- 
lect ion.  This  ana lys i s  the re fore  conf i rms F o r d ' s  con- 
c lusion t h a t  " . . .  t he  medionigra gene was consis-  
t e n t l y  sub jec t  to a t 0 %  d i s a d v a n t a g e  c o m p a r e d  wi th  
dominula f rom t941 to t955 �9 �9 ." 

C. Random-mat ing  with all selection a/ter sampling 

T h e  f ina l  e x a m p l e  is also t a k e n  f rom a sexua l  
p o p u l a t i o n  wi th  a s sumed  r a n d o m - m a t i n g ,  b u t  wi th  
d a t a  g a t h e r e d  wi th  a v e r y  d i f fe ren t  s ampl ing  design.  
T h e  d a t a  is g iven  in T o b a r i  and  K o j i m a  (t967) on an 
inve r s ion  p o l y m o r p h i s m  in Drosophila ananassae. In  
t h e i r  e x p e r i m e n t ,  the  p o p u l a t i o n s  were kep t  in cages 
a n d  qu i ck ly  r eached  a v e r y  large size. One -hundred  
and  f i f ty  l a r v a e  were s a m p l e d  each genera t ion  and  
scored  for t he i r  k a r y o t y p e s .  Consequent ly ,  the  
s amp le  flies d id  no t  c o n t r i b u t e  to  the  nex t  genera t ion .  
Also,  in such expe r imen t s ,  i t  is c u s t o m a r y  to  assume 
al l  se lec t ion  occurs  a f t e r  sampl ing .  U n d e r  such 
s a m p l i n g  condi t ions ,  the  uncond i t i ona l  l ike l ihood 
p rocedu re  of DuMouche l  and  Ande r son  or  the  min i -  
m u m  ch i - square  p rocedure  would  be a p p r o p r i a t e .  
Howeve r ,  as a rgued  in sec t ion  II, the  mode l  deve loped  

in th is  p a p e r  is also a p p r o p r i a t e  if the  sample  size 
pe r  gene ra t ion  is large.  U n d e r  such condi t ions ,  th is  
p rocedure  should  y ie ld  f i tness  e s t ima te s  t h a t  are  
s t a t i s t i c a l l y  equ iva len t  to  e s t ima te s  o b t a i n e d  b y  the  
above  two procedures .  Thus,  the  mode l  g iven  b y  
(3.8) will  be used.  The  mode l  is app l i ed  to  four  
popu la t ions  given in the  a p p e n d i x  of Toba r i  a n d  
K o j i m a  unde r  the  des igna t ion  " 2 L  segrega t ion  wi th  
3L = A A . "  Two rep l ica te  popu la t i ons  were s t a r t e d  
a t  each of two in i t i a l  f requencies  of " A " ,  .1 and  .9. 
The  m a x i m u m  l ike l ihood es t ima tes ,  the i r  s t a n d a r d  
dev ia t ions ,  va r ious  tes t s  and  the  m i n i m u m  chi - square  
e s t ima te s  of Tobar i  and  K o j i m a  are  al l  g iven  in 
Table  3 for these  four  popu la t ions .  As can be seen, 
in no case d id  the  m a x i m u m  l ike l ihood  e s t ima te s  
differ  b y  more  t h a n  a half  of the i r  s t a n d a r d  dev i a t i ons  
f rom the  m i n i m u m  chi -square  es t ima tes .  Therefore ,  
these  two v e r y  d i f ferent  m e t h o d s  whose und e r ly ing  
a s s u m p t i o n s  are qu i te  d i f fe ren t  y ie ld  s t a t i s t i c a l l y  
equ iva l en t  e s t ima tes ,  as was p red ic ted .  

S t a t i s t i c  (2.6) was used to  t es t  for h o m o g e n e i t y  
wi th  respec t  to the  cons t an t  f i tness  model .  B o t h  
r ep l i ca te s  are homogeneous  wi th in  an in i t i a l  gene 
f requency .  F u r t h e r m o r e ,  there  is h o m o g e n e i t y  wi th  
respec t  to  a cons t an t  f i tness  mode l  for all  four  popu-  
la t ions .  Desp i te  the  fact  t h a t  the  cons t an t  f i tness  
model  gave  a good  f i t  for th ree  of t he  four  popu-  
la t ions ,  the  goodness  of f i t  of a cons t an t  f i tness  mode l  
for the  d a t a  pooled  across rep l ica tes  and  in i t i a l  gene 
f requencies  y ie lds  a s igni f icant  chi-square ,  i nd i ca t i ng  
t h a t  the  c o n s t a n t  f i tness  mode l  canno t  a d e q u a t e l y  
descr ibe  th is  combined  d a t a  set.  
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V. Discuss ion  

The idea of conditioning the likelihood function for 
any one generation on the previously observed gene- 
ration is not a new one, although many  of the sta- 
tistical techniques applied to such Markov likelihood 
functions are of more recent origin. Such a conditio- 
nal approach was suggested by  DuMouchel and 
Anderson (1968), but  was rejected by them because 
the unconditional method " . . .  of a single process 
originating in the known initial frequencies, con- 
sistently yields estimates which fit the observed data  
best, as tested by a chi-square criterion for goodness 
of fit." Similar sentiments were expressed in Levene 
et al. (~954) concerning the unconditional minimum 
chi-square produce which gives " . . . .  that  set of con- 
stant W's that  best fits the observations." The flaw 
of these arguments is the goodness of fit criterion 
being used. The criterion in the above two papers 
is the "usual" goodness of fit test in which the 

in which the expected values are derived from the 
fitness estimates and initial conditions only and by 
statistic 2.4. In every case, the maximum likelihood 

�9 estimates yield a larger usual goodness of fit chi- 
square than the minimum chi-square estimates, and 
the minimum chi-square estimates yield a larger 
conditional chi-square than the maximum likelihood 
estimates. Consequently, the minimum chi-square 
procedure can be rejected in favor of the maximum 
conditional likelihood procedure since the latter con- 
sistently yields estimates which fit the observed data 
better, as tested by statistic (2.4). This last state- 
ment is just as wrong as the previously quoted state- 
ments and for the same reason. Both arguments are 
based on a statistical artifact and demonstrate only 
that  the estimation procedure must be consistent 
with the goodness of fit criterion. 

I t  might be tempting to decide which procedure is 
"bet ter"  for a given data set by comparing the two 

Table 4. A comparison of goodness of fit criteria and estimation procedures on 4 populations of Drosophila ananassae + 

Initial Repli- Estimation Estimated Fitnesses ,,Usual" Z 2++ Cond. Z 2 (Eqn. 2.4) 
Freq. cation Procedure AA ]3B based on est. based on estimated 
A fitnesses fitnesses 

Min. Z ~ .429 .243 4.47 4.t 7 
Max. Like. .421 , .254 6.02 4.02 

.t 
Min. ~ .263 .172 7.47 9.47 

2 Max. Like. .237 .160 7.64 9.33 

Min. X 2 .488 .722 14.47" 13.86* 
l Max. Like. .462 .625 t7.33" 13.72" 

.9 
Min. Z 2 .400 .315 3.92 7.48 

2 Max. Like. .403 .377 4.10 7.24 

+ Data from Tobari and Kojima (1967). 
++ All tests have 4 degrees of freedom. 

* Significant at P < .05. 

estimated fitnesses are used to predict the expected 
allele numbers every generation from the initial 
conditions only. Then, the chi-square is the sum 
over generations of the sum over alleles of the quan- 
tities (obs.-exp.)~/exp. This goodness of fit criterion 
is consistent with and rests upon the same assump- 
tions as the unconditional likelihood estimation me- 
thod of DuMouchel and Anderson and the minimum 
chi-square estimation procedure of Levene et al. 
However, the goodness of fit criterion appropriate 
for estimators derived from the conditional likelihood 
is statistic 2.4. A goodness of fit criterion is appro- 
priate only for estimation procedures which share the 
same underlying assumptions. To do otherwise leads 
to unjustifiable conclusions. This point is made in 
Table 4 which gives the fitness estimates for the 
Tobari and Kojima data under both the conditional 
likelihood approach and the minimum chi-square 
approach. Both sets of fitnesses were tested for 
goodness of fit by  the usual goodness of fit criterion 

goodness of fit tests evaluated with the estimation 
procedure consistent with them. However, the two 
procedures have very different underlying assump- 
tions, and both tests are asymptotic and probably have 
different rates of convergence. Also, for the special 
case of random mating with selection occurring after 
sampling, the conditional likelihood fitness estimates 
depend both upon the gene and genotype frequencies 
while the minimum chi-square or unconditional like- 
lihood estimates depend only on gene frequencies. 
Finally, judging various estimation procedures solely 
by the results they yield for a particular data set 
could bias the entire analysis. The question o] which 
method of analysis is most appropriate should not be 
answered by the results o] that analysis a/ter the data 
set has been produced, but should be answered be]ore the 
data is analyzed by inspecting the experimental design 
and sampling procedures. 

As previously argued, the conditional likelihood 
approach is most appropriate when the evolving 
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population itself is followed and the sample includes 
all or nearly all of this population every generation. 
In such a situation all of the randomness in the ex- 
periment is at tr ibuted to the Markov nature of t h e  
evolutionary process; i. e., "genetic drift" in a very 
broad sense. None is at tr ibuted to sampling error. 
At the other extreme, the evolving population may be 
extremely large and the samples very small. In such 
instances, the unconditional approach which assumes 
all randomness is due to sampling error and which 
allows no genetic drift is most appropriate. Most 
situations are intermediate between these two ex- 
tremes. For example, for the Panaxia dominula 
data, the sample amounted to t 0 - - 2 5 %  of the 
evolving population -- a substantial proportion 
but not a complete census. In such instances both 
the sampling error and genetic drift can contribute 
significantly to the randomness of the observations. 
Attr ibut ing all of the randomness to the underlying 
Markov process and none to sampling error exagge- 
rates the importance of correlations between gene- 
rations and causes the statistical analysis to be some- 
what more conservative than it need be for reasons 
discussed in the introduction. On the other hand, 
the unconditional approaches which totally ignores 
the correlation between generations can yield spu- 
rious evidence for selection when in fact there is no 
selection. For these sampling situations it is prob- 
ably better to adopt the more conservative conditio- 
nal approach. In  deciding whether drift could be a 
significant factor, it must be noted that  drift could 
accumulate over several generations even if it is 
negligible over any single generation transition. This 
accumulation of drift will undermine the assumptions 
of the unconditional approaches and could therefore be 
an important  factor even for large sized populations 
if the populations are followed for enough generations. 

As the total population size gets larger and the 
number of generations the population is observed 
gets smaller, dritt becomes less significant and the 
unconditional models appropriate. However, as long 
as the sample size is sufficiently large, the conditional 
likelihood approximates the unconditional likelihood 
and both types of analyses should yield statistically 
equivalent results -- as they did for Tobari and 
Kojima's  (1967) data on an inversion polymorphism 
in a population cage based on samples of 150 flies 
per generation. Thus, when the sample size is large 
and evolving population size is effectively infinite, 
either procedure may be used. Even in this situation 
the conditional approach has some advantages over 
the unconditional approaches. First as mentioned in 
IV. A, the conditional approach is more robust in 
the course of a long experiment to small deviations 
from the underlying assumptions. Second, the condi- 
tional approach in general yields a less complex 
likelihood function than the unconditional approach 
because the parameters of the fitness model only 
enter into single generation transitions. Consequently, 

the likelihood function, the scores and second deriva- 
tives of the log likelihood can all be written down 
explicitly. One bonus of this simplicity is that  initial 
estimators of the fitness parameters can often be 
written down from inspection of the scores. In the 
worked examples and additional analyses not pre- 
sented in this paper, these initial estimators were 
very close to the maximum'  likelihood estimators. 
For the unconditional approach the fitness parame- 
ters are used recursively to predict all the generation 
transitions from the initial conditions. Even for very 
simple models of selection, these relations become 
very complex after only a few transitions, and the 
likelihood cannot be written down explicitly, Thus, 
both the scores and second derivatives must be 
evaluated through some sort of recursive formula. 
This means that  more effort and time must be em- 
ployed to evaluate the maximum likelihood estima- 
tors for the unconditional case. Thus, even for 
sampling designs that  make both models appropriate, 
robustness and simplicity favor the conditional likeli- 
hood approach over the unconditional likelihood 
approach. 
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